4G vs. 5G Key Technology Differences

Optimization Technology

RAN Structure	QoS	Radio Protocol Stack
Frame Structure	Physical Channel & Signals	Link Budget

RAN Structure: 4G, 5G NSA & 5G SA

Optimization Technology

Architecture: 4G, 5GNSA & 5GSA

- 1. An important Characteristic of the 5G System is separating the user plane and control plane functions. This differs from the original 4G System architecture.
 - 1. 4G: P-GW provides both control plane and user plane functions(IP Address allocation & Packet Forwarding)
 - 2. 5G: SMF Provides IP Allocation, and UPF provides packet forwarding
- 2. User and Control plane separation allows independent scaling of the two functions
 - 1. Operators can add more user plane capabilities without having to add more control plane
 - 2. Minimize latency through distributing User plane and keeping it geographically close to the AN

RAN Structure	QoS	Radio Protocol Stack
Frame Structure	Physical Channel & Signals	Link Budget

Quality of Service: 4G & 5G

0

RAN Structure	QoS	Radio Protocol Stack
Frame Structure	Physical Channel & Signals	Link Budget

Radio Protocol Stack: SDAP Layer added in User-Plane

SDAP Primary Task:

The new SDAP (Service Data Adaptation Protocol) primary function maps each QoS Flow onto a specific Data Radio Bearer

- Multiple QoS Flows can be mapped onto a single DRB or,
- Single QoS Flow can be mapped onto a single DRB.
- □ Note: QoS Flows belonging to different PDU Sessions are mapped onto different DRBs.

RAN Structure	QoS	Radio Protocol Stack
Frame Structure	Physical Channel & Signals	Link Budget

Overall Technology Comparison

	4G	5G
Bandwidth	Up to 20MHz	FR1 up to 100MHz, FR2 up to 400MHz, BWP
Numerology(SCS)	Fixed: 15kHz (1ms TTI)	Flexible: (15~120 kHz) (e.g 0.5msTTI @ 30kHz)
PBCH/SS	Wide Beam	Narrow Beam(Beam Sweeping Introduced)
Reference signal	CRS based	CSI-RS/DMRS based "CRS Free"
PDCCH Resource	Entire Bandwidth	RB level(CORESET)
PUCCH	Long Format	Long & Short Format
Waveform	UL: DFT-S-OFDM DL: OFDM	UL: DFT-S-OFDM or OFDM or (Dynamic) DL: OFDM
Modulation	UL: 64QAM as baseline UL 256 QAM Supported in higher versions	UL/DL: 256QAM as a baseline

5G Bandwidth

Optimization Technology

- Up to 20x Higher Bandwidth and New Spectrum Definition. (ex. mmwave)
- NR Offers Less Guard-band and Higher spectrum utilization

*Source: 3GPP TS 38.101

NR Utilization by bandwidth and SCS

	20 MHz	25 MHz	40 MHz	50 MHz	60 MHz	80 MHz	100 MHz
SCS [kHz]	NRB a	NRB and Spectrum Utilization (FR1: 400MHz ~6000MHz)					00MHz)
45	106	133	216	270	-	-	-
15	95.40%	95.80%	97.20%	97.20%	-	-	-
20	51	65	106	133	162	217	273
	91.80%	93.60%	95.40%	95.80%	97.20%	97.70%	98.30%
60	24	31	51	65	79	107	135
00	86.40%	89.30%	91.80%	93.60%	94.80%	93.60%	97.20%

*Source: TS38.104

Frame Structure Comparison: 4G & 5G

Frame and Subframe duration remained the Same for 5G

Number of Symbols in a slot is now fixed to 14 in 5G (4G is fixed to 7)

5G has a flexible numerology, which allows different configurations as the Slot Duration relies on SCS(Sduration = 1 /SCS)

5G is now using a Slot as a scheduling Unit instead of Sub-frame compared to 4G

NR RB Resource Grid is double 4G(14 vs. 7 OFDM symbols in one RB)

Technology

RAN Structure	QoS	Radio Protocol Stack
Frame Structure	Physical Channel & Signals	Link Budget

Physical Channel & Signals Comparison : 4G & 5G

	4G	5G	Remark
	РВСН	РВСН	Same function but PBCH combined within SSB in 5G
	PCFICH	Removed	PCFCH only indicates the symbol number of PDCCH, Indicated and included by MIB in NR
	PHICH	Removed	PHICH for ACK/NACK, Indicated in uplink DCI in NR
Physical Channels	PDCCH	PDCCH (CORESET Introduced in NR)	PDCCH introduced the CORESET concept to give more control over the Frequency domain
	PDSCH	PDSCH	Almost same with no change
	PRACH	PRACH	Almost same with no change
	PUCCH	PUCCH (Introduced Long/Short PUCCH)	5G PUCCH introduced a short format to support low- latency application
	PUSCH	PUSCH	Almost same with no change
	SS (PSS/SSS)	SS (PSS/SSS)	Same function but combined within SSB in 5G
Physical Signals		CSI-RS	
		DMRS for PBCH	Reference Signal used for channel demodulation; 5G is no
		DMRS for PDCCH	longer using CRS
		DMRS for PDSCH	
	-	PT-RS	Phase Noise Tracking (New in NR)

Downlink Comparison: Physical Downlink Control Channel (PDCCH)

- In LTE, PDCCH control channels are always distributed across the entire system bandwidth.
- NR PDCCHs are designed to transmit in a configurable control resource set (Called CORESET).

The time domain is configurable in both 4G & 5G: first 1~3 OFDM symbols of each slot.

Uplink Comparison: Physical Uplink Control Channel (PUCCH)

Mohamed Eladawi

4G 1 ms UE 1 UE 2 UE 3 **UE 4 UL Channel Bandwidth PUSCH UE 4** <u>UE 3</u> **UE 2 UE 1** 0.5 ms

		50	
1~2 Symbols ov Better Latency	er the complete BW		4~14 Symbol and sent in the UL S
Sho	rt [1~2 Symbols]		Long [4~14 Symbols]
	1 Sym	2 Sym	<1 slot
		+	РИССН
PDSCH	B DD DD PDSCH	PUCCH	PUSCH
PLICOLL			РОССН
format	symbols	#Bits	Description
0	1 – 2	≤2	Short PUCCH for small UCI payloads
1	4 – 14	≤2	Long PUCCH for small UCI payloads
2	1 – 2	>2	Short PUCCH for large UCI payloads
3	4 – 14	>2	Long PUCCH for large UCI payloads

PBCH & Synchronization Signals: 4G & 5G

Broadcast Channel Comparison: 4G & 5G

SSB Beam Sweeping

Reference Signal Overhead comparison: 4G & 5G

Optimization

Technology

RAN Structure	QoS	Radio Protocol Stack
Frame Structure	Physical Channel & Signals	Link Budget

Key differences in Link Budgets: 4G & 5G

4G & 5G almost have the same Link Budget Basic Methodology

Factor	4G	5G
Cable loss	Cable Loss considered for RRU/RRH	No Cable Loss in AAU/AAS
BTS Antenna gain	18dBi (Typical Antenna)	25dBi (Active Antenna: 64T64R)
Propagation model	Okumura-Hata/Cost231- Hata	Uma, Rma, and Umi
Penetration loss	Relatively Small	High Penetration Loss for Higher Frequencies
Interference margin	Relatively Large	Less interference due to Narrow Beams

Main Consideration

• Link Budget is counting all of the gains and losses from the TX through the medium(Free Space, Cables, etc.) to the receiver

• Simple Link Budget Equation:

• Received Power(dBm) = TX Power(dBm) + Gains - Losses