5G NSA Planning: NR Operating Band & SSB Planning(NSA Series#5)

Optimization

Mohamed Eladawi

NR Planning Session : Contents

NR Operating Band

- Up to 20x Higher Bandwidth and New Spectrum Definition. (ex. mmwave)
- NR Offers Less Guard-band and Higher spectrum utilization compared to 4G.

NR Operating Band-How to check current bandwidth information from UE Logs?

3GPP TS 38.101- Table 5.2-1: NR operating bands in FR1

NR operating band	FUL_low – FUL_high	FDL_low - FDL_high	Duplex Mode	Band
n8	880 MHz – 915 MHz	925 MHz – 960 MHz	FDD	Low Band
n1	1920 MHz – 1980 MHz	2110 MHz – 2170 MHz	FDD	Mid-Band 1
n41	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD	Mid-Band 1
n77	3300 MHz – 4200 MHz	3300 MHz – 4200 MHz	TDD	Mid-Band 2
n78	3300 MHz – 3800 MHz	3300 MHz – 3800 MHz	TDD	Mid-Band 2
n80	1710 MHz – 1785 MHz	N/A	SUL	Mid-Band 1
n29	N/A	717 MHz – 728 MHz	SDL	Low Band

	Table 5.3.2-1: Maximum transmission bandwidth configuration N_{RB}												
SCS	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
(KEZ)	NRB	NRB	NRB	NRB	NRB	NRB	NRB	NRB	NRB	NRB	NRB	NRB	NRB
15	25	52	79	106	133	160	216	270	N/A	N/A	N/A	N/A	N/A
30	11	24	38	51	65	78	106	133	162	189	217	245	273
60	N/A	11	18	24	31	38	51	65	79	93	107	121	135

RRC Reconfiguration(During SgNB Addition)
<pre>spCellConfig {</pre>
servCellIndex 7,
<pre>reconfigurationWithSync {</pre>
<pre>spCellConfigCommon {</pre>
physCellId 309,
<pre>downlinkConfigCommon {</pre>
<pre>frequencyInfoDL {</pre>
absoluteFrequencySSB
<pre>frequencyBandList {</pre>
FreqBandIndicatorNR 78
},
absoluteFrequencyPointA (
<pre>scs-SpecificCarrierList {</pre>
SCS-SpecificCarrier {
offsetloCarrier 0,
subcarrierSpacing kHz30,
carrierBandwidth 2/3

NR Operating Band – ENDC Band and NR CA Bandcombination

Concepts

ENDC Bandcombination NR CA Bandcombination

> Source: NR in Bulle

Operating Bands Overlap and MFBI Feature

Supplementary Downlink (SDL) Supplementary Uplink (SUL)

3GPP TS 38.101-3 (5G) Inter-band EN-DC within FR1 (Three bands)

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A-3A_n3A	DC_1A_n3A DC_3A_n3A ²
DC_1A-3A_n5A DC_1A-3C_n5A	DC_1A_n5A DC_3A_n5A DC_3C_n5A

3GPP TS 38.101-3 (5G) Inter-band EN-DC within FR1 (Four bands)

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A-3A_n3A-n41A	DC_1A_n3A DC_1A_n41A DC_3A_n3A ⁴ DC_3A_n41A
DC_1A-3A_n3A-n77A ²	DC_1A_n3A DC_1A_n77A DC_3A_n3A ¹ DC_3A_n77A

3GPP TS 38.101-1 (5G) – Carrier Aggregation

Table 5.2A.1-2: Intra-band non-contiguous CA operating bands in FR1

NR CA Band	NR Band (Table 5.2-1)
CA_n3(*)	n3
CA_n7(*)	n7
CA_n25(*)	n25
CA_n41(*)	n41
CA_n48(*)	n48
CA_n66(*)	n66
CA_n77(*)	n77
CA_n78(*)	n78

Source: 3	GPP TS	38.10	1-3	56
-----------	---------------	-------	-----	----

	EN-DC Band Combination	E-UTRA Band 1	E-UTRA Band 2	E-UTRA Band 3	E-UTRA Band 4	NR Band 1	NR Band 2
	DC_1_n28	1	-	-	-	n28	-
2 Bands	DC_1_n40	1	4	-	-	n40	-
	DC_1-3_n28	1	3	-	-	n28	-
3 Bands	DC_1-3_n77	1	3	-	-	n77	-
	DC_7_n28_n78	7	-	-	-	n28	n78
	DC_1-3-5_n78	1	3	5	-	n78	-
4 Bands	DC_1-3-7_n28	1	3	7	-	n28	-
	DC_1-3-7-7_n78	1	3	7	-	n78	-
	DC_1-3-5-7_n78	1	3	5	7	n78	-
5 Bands	DC_1-3-5-7-7_n78	1	3	5	7	n78	-
6 Bands	DC 1-3-7-20 n28-n78	1	3	7	20	n28	n78

NR Operating Band - Band Overlapping & MFBI Feature

Optimization Technology

- Common UE that supports band A Camps on band A.
- MFBI-capable UE that supports band B but does not support band A Camps on band B.
- MFBI-capable UE that supports band A but does not support band B Camps on band A.

Source: 3GPP TS 38.101-1 5G

PBCH & Synchronization Signals: 4G Vs. 5G

Optimization Technology

Differences with LTE

- SS in NR can be flexibly configured in any position on the carrier and do not need to be positioned at the center frequency.
- Each 5G Cell requires to configure 2 center frequencies.
 - New Radio Absolute Radio Frequency Channel Number (NR-ARFCN) for channel bandwidth
 - 2. Global Synchronization Channel Number (GSCN) for SS/PBCH Blocks
- SSB Center Frequency Configuration can be configured using two methods
 - 1. NR-ARFCN (NSA Only)
 - 2. GSCN (NSA & SA)
- SSB Center Frequency Subcarrier spacings for the PSS/SSS vary with operating frequency bands and are specified by 3GPP.

NR-ARFCN & GSCN (Center Channel BW & SSB Position)

- 1. NR-ARFCN stands for New Radio Absolute Radio Frequency Channel Number.
- 2. GSCN stands for Global synchronization channel number, can be used in both 5G-NSA & 5G SA, and is known as a Synchronization raster.

SSB Frequency Location identification and calculation methods

- 1. ARFCN is used to calculate center channel bandwidth and Absolute-SSB-Frequency and is called channel raster.
- 2. It is used only in 5G-NSA.
- 3. The Channel Raster has a relatively high resolution using Low-Frequency scan granularity (15,30,60 & 100Khz).
- 4. The Absolute Radio frequency Number is delivered in the RRC Reconfiguration message, which means that the UE will receive the SSB Frequency domain position directly from the 4G Leg.

ARFCN-Calculation									
NR-ARFCN = NREF-Offs+(FREF - FREF-Offs) / ΔFGlobal									
Frequency range ΔF Global FREF-Offs (GHz) "Input" "Input" "Input" Range of "Input" "Input" "Input" (MHz) "Input" (Out-put"									
0 - 3000	5	0	0	0 - 599999					
3000 - 24250	15	3000	600000	600000 - 2016666					
24250 - 100000	60	24250.08	2016667	2016667 - 3279165					

The center frequency proposed" FREF" is **2530Mhz**, which falls in the first category, which means that ΔF Global & FREF-Offs = zero.

NR-ARFCN = 0 + (2530000Khz – 0) / 5Khz = 506000 *FREF: Center Frequency

	USCIV		
Range of N	Range of M	SSB Frequency Position SSREF	GSCN
1 - 2499	1,3 ,5	N * 1.2MHz + M * 50kHz	3N + (M-3)/2
0 - 14756	-	3000MHz + N * 1.44MHz	7499 + N
0 - 4383	-	24250.08MHz + N * 17.28MHz	22256 + N
	Range of N 1 - 2499 0 - 14756 0 - 4383	Range of N Range of M 1 - 2499 1,3,5 0 - 14756 - 0 - 4383 -	Range of N Range of M SSB Frequency Position SSREF 1 - 2499 1,3,5 N * 1.2MHz + M * 50kHz 0 - 14756 - 3000MHz + N * 1.44MHz 0 - 4383 - 24250.08MHz + N * 17.28MHz

CCCN

- The GSCN is equivalent to NR-ARFCN used by channel raster and is defined in 3 sections to increase spacing between raster entries to shorten the initial access time for higher operating bands.
- The N and M Variables maintain subcarrier alignment between the main channel and SS-PBCH when using the 100 kHz Channel Raster.
- Operating bands above 3 GHz do not use the 100 kHz channel raster.

SS/PBCH different positions impact(1)

SS/PBCH different positions impact(2)

